Electroplating has always been at the core of printed circuit fabrication. It was the first process I was assigned to as a new young engineer at Hewlett-Packard in 1970. Of course, the copper-plating process was copper pyrophosphate, an alkaline—a very temperamental bath from MT Chemicals Inc. Soon after I mastered the chemistry and control of this plating solution, I had the opportunity to test and introduce PC-GLEEM from LeaRonal, Inc., a new sulfuric acid-based copper sulfate copper-plating chemistry. We never switched back.
While the layout of the circuit gives us much of the electrical characteristics of the design, your choice of materials can affect the mechanical and electrical characteristics of the circuit. Material choices affect not only the design of the circuit for its environment, but also the manufacturing and assembly processes. While the layout of the circuit gives us much of the electrical characteristics of the design, your choice of materials can affect the mechanical and electrical characteristics of the circuit.
Everyday rigid FR-4 PCBs have a well-known layer stackup recipe: dielectrics, PCB conductor layers, plane layers, mask, and silkscreen (nomenclature or legend). More advanced layer types may include embedded or screened components or cavities with bonded bare die. Flex and rigid-flex stackups include those similar to rigid PCBs, such as dielectrics, conductor, mask, and silkscreen layers, but that is where the similarity ends. There are many additional layer types present for this genre of PCB. They include types like coverlay, adhesive, conductive film, conductive foil, conductive adhesive, bondply, and stiffener.
I recently spoke with Mike Morando, director of sales and marketing for PFC Flexible Circuits and a contributor for Flex007. I asked Mike to discuss the latest innovations at PFC, as well as some of the trends he’s seeing in flex and rigid-flex circuits now. Mike also discusses rigidized flex, a technology that is an alternative to rigid-flex circuits—one that can save customers up to 20% compared to rigid-flex. Innovation in the flex arena never seems to stop.
Nolan Johnson talks with Scott Miller about a special call for proposals which NextFlex currently has open to explore methods to dewarp 3D scans of physical boards to enable multi-image scans to be stitched together. There is the possibility of funding for viable proposals. Deadline is May 15, 2023.